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ABSTRACT 

A new approach for solving steady incompressible Navier-Stokes equations is presented in this paper. This 
method extends the upwind Riemann-problem-based techniques to viscous flows, which is obtained by 
applying modified artificial compressibility Navier-Stokes equations and fully discrete high-order numerical 
schemes for systems of advection-diffusion equations. In this approach, utilizing the local Riemann solutions 
the steady incompressible viscous flows can be solved in a similar way to that of inviscid hyperbolic 
conservation laws. Numerical experiments on the driven cavity problem indicate that this approach can give 
satisfactory solutions. 
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INTRODUCTION 

Incompressible flows cover a wide variety of applications which include fluid motion of water 
and low speed air. Therefore the solution of the incompressible Navier-Stokes equations is of 
great interest in industry. The major difficulty for computation of incompressible flows lies in the 
absence of the time derivative of density. Thus, the pressure term cannot be explicitly updated 
with the velocity. Hence time-dependent methods suitable for compressible equations cannot be 
applied without adaptation. 

In order to overcome the problem, one approach is to use the artificial compressibility method 
which was initially introduced by Chorin1 as a novel approach to solve steady-state viscous 
incompressible flow problems. The principle of this method is to replace the divergence-free 
continuity equation by a pseudo-time-dependent equation with a pseudo-time derivative of the 
pressure which is designed to vanish as steady state is reached, where the divergence-free 
condition is satisfied. One remarkable feature of the approach is that the pseudo-compressible 
Navier-Stokes equations possess a sub-problem of hyperbolic character with pseudo-pressure 
waves propogating with finite speed. It is this hyperbolic nature that enables us to take advantage 
of the robust, upwind, Riemann-problem-based techniques. 

In this approach, the pseudo-compressible Navier-Stokes equations can be decoupled in terms 
of the advection part and the diffusion part. Then the advection part can be solved by applying a 
upwind, Riemann-problem-based hyperbolic scheme and then the diffusion part can be solved by 
another stage using a viscous scheme. This technique is called advection-diffusion operator 
splitting. 
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In this paper, an alternative approach is proposed. Instead of using a two-stage scheme, i.e. the 
advection-diffusion operator splitting, the new approach solves the steady incompressible viscous 
fluid flows in one stage. This approach is based on two techniques. First, the pseudo-compressible 
Navier-Stokes equations are modified in such a way that they can be totally decoupled into a set 
of advection-diffusion equations. Second, the conservative upwind high-order numerical schemes 
used are developed on full discretization of a model advection-diffusion equation. The feature of 
the approach is that the steady incompressible Navier-Stokes equations are solved in a similar 
manner as hyperbolic conservation laws. Therefore all techniques suitable for hyperbolic systems 
can be similarly extended to the incompressible viscous system. To illustrate the approach, the 
numerical experiments of a driven cavity problem proposed by Shih2 are presented. The 
numerical results computed by schemes up to fourth-order agree with the exact solution well. 

This paper is orgnized as follows: First, modified artificial compressible Navier-Stokes 
equations are presented. Next, linear advection-diffusion systems are discussed and fully discrete 
high-order numerical schemes for the linear systems are given. The discussion is then extended to 
non-linear advection-diffusion systems, the numerical solutions to the driven cavity problem are 
presented and, finally, conclusions are drawn. 

ARTIFICIAL COMPRESSIBILITY NAVIER-STOKES EQUATIONS 

The system of incompressible Navier-Stokes equations in a vector form reads 

where u, p and t are the velocity, pressure and real time, respectively, which are non-
dimensionlized by a characteristic length and velocity. Re+ is the characteristic Reynolds number. 

To apply the artificial compressibility method, the continuity equation (2) is replaced by the 
following nseudo-time-denendent equation1: 

where δ is the constant artificial compressibility parameter. Note that in such a definition the time 
t in the pseudo-compressibility system (1) and (3) has become a pseudo-time. Thereby, the 
solution of the transient behaviour loses its physical meaning until the steady state is approached 
asymptotically in the pseudo-time, where the time derivatives in the pseudo-system vanish so that 
the divergence-free velocity is satisfied. 

For a reason which will be explained in a due course, equation (3) is modified to the following 
form: 

It is known that for flows with low Reynolds number the pressure approximately satisfies the 
Laplace equation, i.e. while for relatively large Reynolds number flows the magnitude of 
coefficient 1/Re+ is small. Therefore when steady state is reached the right-hand side of the 
equation is always very small. 

Combining equation (1) with equation (4), the two-dimensional pseudo-compressible Navier-
Stokes equations in Cartesian co-ordinates take on the following form: 
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Here u and v are the velocity components in x and y direction respectively. 
One way of treating multi-dimensional problems is to apply the method of fractional steps or 

operator splitting3. In this approach, the viscous system (5) can be split into two augmented one-
dimensional viscous systems: 

and 

then the solution of (5) can be obtained by solving equations (8) and (9) using "Strang splitting"3. 
Therefore it is reasonable that from now on our attention is focused on studying the system of one-
dimensional advection-diffusion equations. 

LINEAR ADVECTION-DIFFUSION SYSTEMS 

In the last section the non-linear parabolic system was derived. In order to understand the solution 
structure of the system and justify the Riemann-problem-based approach, for convenience the 
initial-value problem for a one-dimensional linear advection-diffusion system with constant 
coefficients is first studied. 

where, U are vector functions of m conserved variables, A = F'(U) is an m by m constant matrix, 
and N is an m by m diagonal diffusive coefficient matrix. 

If we ignore the viscous terms on the right-hand side of equation (10), then equation (10) 
reduces to a system of conservation laws with only advective flux function F(U) =AU. We know 
that the system is hyperbolic if A is diagonalizable with real eigenvalues. 

Characteristic Variables 
The linear systems can be decoupled into m independent scalar equations in terms of the 
characteristics variables which is defined by: 

However, with the viscous terms on the right-hand side of equation (10) the system is parabolic. 
Nevertheless, the definition of equation (11) is still adopted and the viscous system (10) is 
transformed into characteristic variables by multiplying equation (10) by R-1: 

i.e. 
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since R-1 N R = N. Note that the viscous system (10) is absolutely decoupled into m independent 
scalar advection-diffusion equations: 

Recall that in the artificial compressibility equation (5) v = l/Re+ , this is why the artificial 
compressibility equation is modified in the form of equation (4). 

Applying the fully discrete numerical schemes introduced in Shi4 the solutions of v(p)(x, t) for 
each of these scalar advection-diffusion equations can be computed. Then the original solution of 
eauation (10) can be transformed back via: 

i.e. 

The analysis procedure and the solution (16) look much like those of hyperbolic conservation 
laws except that the values of v(p) no longer hold constant along characteristic lines for each scalar 
equation, in other words they no longer simply advect with the initial values since: 

Instead of the right-hand side being zero, it is This means that, apart from advection, the 
values of v(p) are diffused with time evolution at the rate of However, the characteristic 
curve is still a straight line since: 

i.e. 

where x = x0 when t = 0. 
Therefore the solution of equation (16) can be viewed as the superposition of m waves, each of 

which is not only advected independently with propagating speed λ(p), but also diffused 
independently at the dissipating rate 

Fully discrete high-order schemes for linear systems 
In this section the fully discrete conservative high-order schemes for linear advection-diffusion 
systems are presented. The detailed derivation of the schemes can be found in Shi4. Conservative 
numerical schemes are considered which have the following form: 

where h is a cell width and k a time step. The numerical fluxes Fj+1/2 are defined as follows. 
Three-point centered numerical flux for systems. The three-point fully discrete numerical flux 

for systems, which has first-order accuracy in time and second-order in space, i.e. order (1,2), can 
be written as: 
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where k/h is a cell Courant number; h/b is a cell Reynolds number 
and is called the wave strength across the pth wave. 

Notice that the above flux (20) not only includes the advection flux, 
but also involves the diffusion f l u x , F l u x (20), therefore, is an advection-
diffusion numerical flux. 

Five-point upwind-based numerical flux for systems. The advection-diffusion numerical flux 
of five-point scheme (order (1, 3)) for systems can be written as: 

where 

Five-point centred numerical flux for systems. The five-point advection-diffusion numerical flux 
(order (2, 4)) for systems can be written as: 

where 
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NON-LINEAR ADVECTION-DIFFUSION SYSTEMS 

In this section the discussion is extended to a non-linear system of advection-diffusion emiations 

where, U(x, t) is the column vector of m conserved variables; F(U) is a vector-valued physical 
advection flux function of m components; N is a diagonal diffusive coefficient matrix. 

It is said that the parabolic system of equation (23) has hyperbolic character if the m by m 
Jocabin matrix 

A(U) = F'(U) (24) 
is diagonalizable with real eigenvalues λ(1) (U), λ(2) (U),..., λ(m) (U). 

Let us take the one-dimensional artificial compressibility Navier-Stokes equations (8) introduced 
in the second section for example. The eigenvalues of the Jocabin matrix F'(U) of eauation (8) are: 

where 

is analogous to the sound speed in the Euler equations. The corresponding right eigenvectors are: 

The eigenvalues are not constant. The strategy for solving systems of the non-linear equations is to 
utilize the Riemann problem solutions. Therefore Riemann solvers for the artificial compressibility 
Navier-Stokes equations are needed. Following Roe's5 strategy, the eigenvalues and eigenvectors 
are evaluated at the average state U. For the two-dimensional case it takes the following form 

The wave strengths α-(p) are determined by: 
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where 
ΔM = uj+1 - uj, Δv = vj+1 - vj, Δp = pj+1 - pj 

For splitting system (9) in the y direction, the corresponding eigenvalues and eigenvectors can be 
obtained by interchanging the roles of u and v. 

From the observation of the eigenvalues (25) we know that the eigenvalue λ(1) is always 
negative and the λ(3) always positive, i.e. there is no sonic point in the Riemann solution. This is 
indeed a very pleasant feature of the artificial compressibility Navier-Stokes equations because 
there is no fear of failure caused by entropy-violating when applying an approximate Riemann 
solver. 

APPLICATION TO THE DRIVEN CAVITY PROBLEM 

Because incompressible viscous flow in a driven cavity has a simple geometry and can present 
some interesting complex fluid dynamic features, such as vortex development and boundary-layer 
formation (high Reynolds number) near the walls of the cavity, the driven cavity problem has been 
accepted as a ideal test problem for evaluating an optimum numerical scheme for solving the 
incompressible Navier-Stokes equations6. The specific driven cavity problem considered in this 
paper is proposed by Shih and Tan2 Instead of the classical lid-driven cavity flow, this flow is 
driven by combined shear and body forces. The advantage of Shih's problem is that the exact 
solution is known, therefore provides a reliable base with which to compare. 

To illustrate the approach, Reynolds number Re+ = 100 and Re+ = 500 were chosen for the tests. 
The 1 x 1 domain is discretized with 40 x 40 uniform cells. The Riemann solver (28)-(29) is 
applied to carry out these tests. The pre-numerical experiments indicate that the artificial 
compressibility parameter 8 affects not only the convergence rate but also the accuracy of the 
solution7. When determining the value of 8, the first priority is put on the accuracy and then the 
convergence rate. 

Figure 1 shows the exact solutions which are presented for comparison with the numerical 
results. In Figure 1, (a) presents contours of isovelocity u; (b) presents the isovelocity v; (c) is 
contours of isopressure for Re+ = 100, and (d) is contours of isopressure for Re+ = 500. 

We are interested in a steady-state solution. After finite iterations the artificial compressibility 
approach will approximately converge to the steady-state solution. The residual error is measured 
by a parameter, which monitors the convergence rate of the solution to the steady-state. One 
parameter introduced by Peyret and Taylor8 have the following form: 

where N is the number of computational cells; U is the flow variables. 
If the magnitude of R is less than a preset value, the solution is said to have converged to the 

stead-state solution. In the driven cavity simulation the parameter (30) was used. The convergence 
criterion or the average residual value is set to be 1 x 10-5. 

Case 1: Re+ = 100 
Figure 2 shows the numerical solutions by the three-point centred scheme (20). The artificial 
compressibility parameter δ = 2 was used in the case. The convergence rate is fast: the CPU time 
used is 7.58 minutes (DECstation 5,000/200). In Figure 2, (a) is the isovelocity u; (b) is the 
isovelocity v; (c) presents the computed isopressure, and (d) shows the comparison between the 
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exact solution (line) and the numerical solution (symbol) for the velocity v at y = 0.5. As shown in 
the figures the numerical results have good agreement with the exact solutions. 

Figure 3 shows the numerical solutions by the five-point centred scheme (22). The 
arrangement of the figure is the same as Figure 2. Comparing with the three-point scheme, the 
five-point scheme used nearly twice the CPU time as that of the the three-point scheme, which is 
because of the complexity of the algebra of the scheme. Again there is a good agreement between 
the numerical results and the exact solutions. 

Case 2: Re+ = 500 
As in case 1, Figures 4 and 5 show the numerical solutions by the three and five-point centred 
schemes, respectively. In this case, the artificial compressibility parameter δ = 1 was used. Again 
the numerical results of velocity and pressure have good agreements with the exact solution. 
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CONCLUSIONS 

Distinguishing from the traditional numerical methods, this paper extends the upwind Riemann-
problem-based technique to the solution of steady incompressible Navier-Stokes equations. This 
approach is based on two techniques: the modified pseudo-compressible Navier-Stokes equations 
which can be totally decoupled into a set of advection-diffusion equations and the development of 
fully discrete high-order conservative numerical schemes for systems of advection-diffusion 
equations. This approach has been tested and validated by solving two-dimensional driven cavity 
problems with Reynolds number Re+ up to 500. 
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Volume 6 Number 3, the May issue of this journal, included the following papers: The 
Application of Split-Coefficient Matrix Method to Transient Two Phase Flows by D.M. Lu, 
H.C. Simpson and A. Gilchrist; and Conjugate Heat Transfer Analysis of Fluid Flow in a 
Phase-Change Energy Storage Unit by Hongjun Li, C.K. Hsieh and D.Y. Goswami. 

Within the body of the issue the authors' names were correctly attributed to each article 
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